This day in history May 16, 2020-electricity
4 responses | 0 likes
Started by metmike - May 16, 2020, 12:28 p.m.

Read and learn about history. Pick out a good one for us.


https://en.wikipedia.org/wiki/May_16


Extraordinarily significant day in history!

Comments
By metmike - May 16, 2020, 12:39 p.m.
Like Reply


Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines which facilitate this movement are known as a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the "power grid" in North America, or just "the grid".

https://en.wikipedia.org/wiki/Electric_power_transmission



 

Diagram of an electric power system; transmission system is in blue

Most transmission lines are high-voltage three-phase alternating current (AC), although single phase AC is sometimes used in railway electrification systems. High-voltage direct-current (HVDC) technology is used for greater efficiency over very long distances (typically hundreds of miles). HVDC technology is also used in submarine power cables (typically longer than 30 miles (50 km)), and in the interchange of power between grids that are not mutually synchronized. HVDC links are used to stabilize large power distribution networks where sudden new loads, or blackouts, in one part of a network can result in synchronization problems and cascading failures.

By metmike - May 16, 2020, 12:45 p.m.
Like Reply



Electricity is transmitted at high voltages (66 kV or above) to reduce the energy loss which occurs  in long-distance transmission. Power is usually transmitted through overhead power lines. Underground power transmission has a significantly higher installation cost and greater operational limitations, but reduced maintenance costs. Underground transmission is sometimes used in urban areas or environmentally sensitive locations.

A lack of electrical energy storage facilities in transmission systems leads to a key limitation. Electrical energy must be generated at the same rate at which it is consumed. A sophisticated control system is required to ensure that the power generation very closely matches the demand. If the demand for power exceeds supply, the imbalance can cause generation plant(s) and transmission equipment to automatically disconnect or shut down to prevent damage. In the worst case, this may lead to a cascading series of shut downs and a major regional blackout. Examples include the US Northeast blackouts of 1965, 1977, 2003, and major blackouts in other US regions in 1996 and 2011. Electric transmission networks are interconnected into regional, national, and even continent wide networks to reduce the risk of such a failure by providing multiple redundant, alternative routes for power to flow should such shut downs occur. Transmission companies determine the maximum reliable capacity of each line (ordinarily less than its physical or thermal limit) to ensure that spare capacity is available in the event of a failure in another part of the network.

By metmike - May 16, 2020, 12:48 p.m.
Like Reply

The term high voltage usually means electrical energy at voltages high enough to inflict harm on living organisms. Equipment and conductors that carry high voltage warrant particular safety requirements and procedures. In certain industries, high voltage means voltage above a particular threshold (see below). High voltage is used in electrical power distribution, in cathode ray tubes, to generate X-rays and particle beams, to demonstrate arcing, for ignition, in  photomultiplier tubes, and in high power amplifier vacuum tubes and other in

 

Power lines with high voltage warning sign.

Electrical transmission and distribution lines for electric power typically use voltages between tens and hundreds of kilovolts. The lines may be overhead or underground. High voltage is used in power distribution to reduce ohmic losses when transporting electricity long distance.


By metmike - May 16, 2020, 12:49 p.m.
Like Reply

Safety

 

International safety symbol: "Caution, risk of electric shock" (ISO 7010 W012), also known as high voltage symbol

See also: Electrical injury

Voltages greater than 50 V applied across dry unbroken human skin can cause heart fibrillation if they produce electric currents in body tissues that happen to pass through the chest area. The voltage at which there is the danger of electrocution depends on the electrical conductivity of dry human skin. Living human tissue can be protected from damage by the insulating characteristics of dry skin up to around 50 volts. If the same skin becomes wet, if there are wounds, or if the voltage is applied to electrodes that penetrate the skin, then even voltage sources below 40 V can be lethal.

Accidental contact with any high voltage supplying sufficient energy may result in severe injury or death. This can occur as a person's body provides a path for current flow, causing tissue damage and heart failure. Other injuries can include burns from the arc generated by the accidental contact. These burns can be especially dangerous if the victim's airway is affected. Injuries may also be suffered as a result of the physical forces experienced by people who fall from a great height or are thrown a considerable distance.

Low-energy exposure to high voltage may be harmless, such as the spark produced in a dry climate when touching a doorknob after walking across a carpeted floor. The voltage can be in the thousand-volt range, but the average current is low.

The standard precautions to avoid injury include working under conditions that would avoid having electrical energy flow through the body, particularly through the heart region, such as between the arms, or between an arm and a leg. Electricity can flow between two conductors in high voltage equipment and the body can complete the circuit. To avoid that from happening, the worker should wear insulating clothing such as rubber gloves, use insulated tools, and avoid touching the equipment with more than one hand at a time. An electrical current can also flow between the equipment and the earth ground. To prevent that, the worker should stand on an insulated surface such as on rubber mats. Safety equipment is tested regularly to ensure it is still protecting the user. Test regulations vary according to country. Testing companies can test at up 300,000 volts and offer services from glove testing to Elevated Working Platform (or EWP) testing.